1) Prueba que hay infinitos pares ordenados de números enteros positivos $(m,n)$ tales que \[\frac{m+1}{n} + \frac{n+1}{m}\]
es un entero positivo.
2) Probar que existe un único entero positivo formado solamente por los dígitos 2 y 5, que tiene 2007 dígitos y que es divisible por $2^{2007}$ .
No hay comentarios.:
Publicar un comentario