sábado, 30 de enero de 2010

Problema del Día

Regresemos a la diversión de problema del día.

Se escoge un número al azar entre 0 y 1. Ahora se escoge otro número al azar entre 0 y 1 y se suma con el anterior. Si la suma es menor a uno, se escoge otro número al azar entre 0 y 1 y así sucesivamente hasta que se tenga una suma mayor a 1. En promedio, cuántos números se necesitan para que la suma sea mayor a 1?

Si hacen preguntas en los comentarios, les doy pistas.

miércoles, 20 de enero de 2010

Tareas Nacionales.

¡¡¡YA ESTÁN LOS PROBLEMAS QUE LES DEJARON DE TAREA A MANUEL Y KARINA!!!


Aqui están:


-Demostrar que 1+2+3+...+n DIVIDE A 1^k+2^k+3^k+...+n^k (con k impar)


- En un triángulo ABC, la altura, la bisectriz y la mediana desde uno de los vertices divide al ángulo en cuatro ángulos iguales. Encuentra los ángulos del triángulo.


-Encontrar todas las parejas de enteros positivos (m,n), tales que se cumpla:
raiz(m²-4) < 2raiz(n) - m < raiz (m²-2).

(Editado por Isaí)
Manuel tambien me contó de estos:
-Demostrar que si trazas una recta por el gravicentro de un triangulo, entonces la suma de las distancias en segementos dirigidos de los vertices hacia esa recta es 0.

-Sean a,b,c los lados de un triangulo demostrar que:
a^2+b^2+c^2>=4*(abc)*sqrt(3)

-En el congreso se forman 3 comisiones disjuntas de 100 congresistas cada una. Cada pareja de congresistas se conocen o no se conocen entre si. Demuestra que existen dos congresistas, de comisiones distintas, tales que la tercera comisión contiene a 17 congresistas que conocen a ambos, o 17 congresistas que no conocen a ninguno de ellos.

YA PUEDEN PONER SOLUCIONES

jueves, 14 de enero de 2010

Sucesiones

12,24,36,48,_,_,_,90, llena los espacios.
Si ya se lo saben no digan xD

lunes, 11 de enero de 2010

Problema

Demuestra que si (n-1)!=-1mod n entonces n es primo. Este resultado se considera de Gauss, yo lo resolvi hace poquito y no se me hizo muy dificil.

martes, 5 de enero de 2010

Apuesta seria

Apuesto 100 dolares a que vamos a ver llegar el 2013, le apuesto al que sea.